
ion in
ach of

peri-
aspects
e new

Thus,
f their
maxi-
s, care-

roces-
st and
array

that is
based
se of
High Efficiency Parallel Production Code
Development using Finite Elements within the

Framework of C++

Allen C. Robinson

James S. Peery

Michael K. W. Wong

Randall M. Summers

Sandia National Laboratories

Albuquerque, New Mexico 87185

Introduction

Codes using object oriented technology are beginning to be used for production simulat
computational physics. This presentation describes the current code development appro
the ALEGRA finite element simulation tool in use at Sandia National Laboratories. The ex
ences and current viewpoints of the code developers will be presented to emphasize those
of C++ that have worked for us and those that have not and which are being discarded as th
generations of supercomputing machines arrive.

Memory Layout and Efficiency

Large finite element programs generally push the limits of supercomputer capabilities.
developers of such codes use programming paradigms that maximize the performance o
code on these compute platforms. Many current finite element codes were designed to take
mum advantage of vector processing. This paradigm engendered the use of large data array
fully constructed to make optimal use of vector processing hardware.

The current generation workstations and massively parallel computers do not have vector p
sors. Instead, these computers use commodity high-performance RISC CPUs with large fir
second level caches and relatively low memory bandwidths. For this type of hardware, using
data structures and Object-Oriented Programming (OOP) can lead to very inefficient code
very difficult for standard compiler technology to overcome. Instead, a node and element
data structure can provide much better utilization of memory bandwidth and still make u
OOP styles in many ways.



ions of
ent

tures.
s. How-
puters.
ements.
le and

this

etailed
w the
RA.

sics
lop dif-
ics can
ysics.
posi-

on for

class
the

r syn-

code
OR-

e aris-
cker
set
We have studied this data structure issue and provide a case study of two successive vers
the ALEGRA solid dynamics code, an Arbitrary Lagrangian-Eulerian unstructured finite elem
program written in C++. The early version was built upon classes of “smart array” data struc
These classes hid the array nature of the data through extensive use of overloaded operator
ever, this approach yielded poor performance characteristics on current generation com
The subsequent version features a data structure rewritten as collections of nodes and el
This approach has substantially improved performance and made the code more flexib
robust for today’s distributed memory parallel supercomputers. The use of C++ to provide
programming flexibility will be described.

The performance issues and how these are related to the hardware will be discussed. D
examination and comparison of compute-intensive code segments provide insight into ho
code utilizes the hardware. This information was incorporated in the latest version of ALEG
We discuss the resulting performance improvement.

Using C++ to Organize at a High Level

Probably the most important use of C++ in ALEGRA is in the organization of different phy
packages. The basic finite element data is found in the Region class. Derived classes deve
ferent physics types such as Hydrodynamics or Conduction from this base class. The phys
then be combined using appropriate multiple inheritance techniques to provided coupled ph
Examples of these techniques will be illustrated. Parallelism is introduced via a mesh decom
tion. Ghost elements are being implemented in order to have full access to nodal informati
use by fully implicit nodal solvers and to improve efficiency in the rezone step.

Using C++ to Organize at a Low Level

One of the most useful and efficient classes that we use is a fully inlined vector/tensor
library called PHYSLIB. Current compilers are able to generated efficient object code from
class library and developers find it much easier to write correct code using the class operato
tax. Examples of the use of this low level abstraction in the code will be given.

Use of Libraries

The ALEGRA development does not insist on any particular language for the portions of the
which require significant computational work. Parts of the code are written in C++, C and F
TRAN 77. Code reuse arising from modular programming is just as important as code reus
ing from PHYSLIB classes or from the inheritance hierarchy. For example, the interface tra
routine is a set of FORTRAN 77 routines while the AZTEC parallel iterative solver library is a
of C routines. Both of these libraries have been developed at Sandia.



l fea-
usly,
and

nt of
Conclusion

The ALEGRA project has found that C++ object-oriented technology has been an essentia
ture of developing high quality parallel simulation code. The technology must be used judicio
and it coexists in a productive way with well-designed modular code and libraries written in C
FORTRAN.

___________

This work performed at Sandia National Laboratories supported by the U.S. Departme
Energy under contract number AC04-94AL85000.


	High Efficiency Parallel Production Code Development using Finite Elements within the Framework o...
	Allen C. Robinson
	James S. Peery
	Michael K. W. Wong
	Randall M. Summers
	Sandia National Laboratories
	Albuquerque, New Mexico 87185
	Introduction

	Codes using object oriented technology are beginning to be used for production simulation in comp...
	Memory Layout and Efficiency

	Large finite element programs generally push the limits of supercomputer capabilities. Thus, deve...
	The current generation workstations and massively parallel computers do not have vector processor...
	We have studied this data structure issue and provide a case study of two successive versions of ...
	The performance issues and how these are related to the hardware will be discussed. Detailed exam...
	Using C++ to Organize at a High Level

	Probably the most important use of C++ in ALEGRA is in the organization of different physics pack...
	Using C++ to Organize at a Low Level

	One of the most useful and efficient classes that we use is a fully inlined vector/tensor class l...
	Use of Libraries

	The ALEGRA development does not insist on any particular language for the portions of the code wh...
	Conclusion

	The ALEGRA project has found that C++ object-oriented technology has been an essential feature of...
	___________
	This work performed at Sandia National Laboratories supported by the U.S. Department of Energy un...

